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Abstract: Major cities worldwide constantly deal with health hazards caused by air 
pollution. Modeling this pollution on an urban scale is essential for assessing the impact 
of local policies and promoting sustainable urban development. However, there are 
practical difficulties when using microscale modeling in applied context, and 
particularly for nitrogen dioxide modeling (NO2). In this study, a Computational Fluid 
Dynamics (CFD) model was employed to assess monthly NO2 concentrations in 
Antwerp, Belgium, and the results were compared to a one-month measurement 
campaign using 73 passive samplers. The result showed that using CFD with 
conventional assumption – such as neutral atmospheric stability consideration and 
using a turbulent Schmidt number (𝑆𝑐𝑡) set to 0.7 – yield satisfying results according to 
air quality model acceptance criteria. Optimal outcomes were achieved by considering 
NO2 background concentration instead of NOx and employing Bachlin et al.’s empirical 
function to convert modeled NOx concentrations to NO2, dismissing the need for 
straightforward chemical mechanisms – such  as photostationary steady-state 
equilibrium (PSS) –, or more expensive models in terms of computing resources. This 
approach yielded an overall error of less than 15 % and a correlation coefficient 𝑅 of 
0.78, affirming its effectiveness in modeling NO2 air quality in applied context. 
 
Keywords: Computational fluid dynamics, Air quality, Microscale modeling, Nitrogen 
dioxide, NO2 

 
Highlights: 

• NO2 concentrations can be effectively modeled without any chemical 
mechanism 

• Less than 15% of error is obtained using the Bachlin et al. empirical function 
• Neutral atmosphere and Sct = 0.7 yields good results in real application 
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1. Introduction 

Air pollution is one of the major concerns of the last few decades, leading to a decline in 
well-being, quality of life and life expectancy by several years (Manisalidis et al., 2020). 
Consequently, it has become a prominent challenge for modern societies (Agathokleous 
and Sicard, 2021). 

Among the various pollutants found in the atmosphere, nitrogen dioxide (NO2) has been 
identified by the World Health Organization (WHO) as one of the highest priority air 
pollutants to be monitored (WHO, 2005). This pollutant is multifaceted in its 
detrimental effects. On the human health front, it has been linked to various disorders 
such as lung diseases (Yue et al., 2022), asthmatic symptoms (van Zoest et al., 2020), 
and chronic kidney diseases (Wu et al., 2022), among others. Environmentally, it acts 
as a precursor to nitric acid production in the atmosphere, playing a significant role in 
the formation of acid rain (Sudalma et al., 2015). This not only underscores its direct 
impact on human health but also highlights its broader ecological consequences. 
Furthermore, this airborne pollutant is also one of the most frequently encountered air 
pollutants in urban areas. Its primary sources are anthropogenic, predominantly 
stemming from industrial activities and, to a greater extent, traffic exhaust emissions 
(Thunis, 2018). For instance, in Paris, France, more than half (56 %) of the total NOx 
emissions (including primary-emitted and secondary-formed NO2) come from traffic-
related emissions, while less than 20 % comes from tertiary and residential sectors 
(AIRPARIF, 2016). In the meantime, there exists a paradox: living in urban areas, 
particularly near high-traffic roads, is associated with elevated health risks (Chen et al., 
2017; Finkelstein et al., 2004). Despite this, there is a growing trend of urbanization, 
with the global urban population projected to increase from the current 50% to 68% 
by 2050 (United Nations, 2019). 

To protect populations from excessive exposure to air pollution, the European Union 
(EU) and the WHO have issued critical values of NO2 concentrations not to be exceeded 
which include hourly and annual standards (EU, 2008; WHO, 2021). To use these 
standards, it is therefore essential to have the capability to accurately assess NO2 
concentrations, which is a matter of its own.  

There are two distinct methods to assess NO2 concentrations in ambient air: 
measurement campaigns and numerical modeling. Although the first approach 
provides real information from the field, it suffers from some limitations such as spatial 
representativeness, both horizontally and vertically, as well as the time and cost 
involved in collecting sufficient data associated with the corresponding costs (Jurado et 
al., 2023a). Numerical modeling, on the other hand, can surmount these limitations, 
facilitating the development of new strategies to enhance air quality in urban areas. 
This is achievable through the consideration of both emission patterns and urban 
morphology scenarios (Yang et al., 2020), assuming the models are optimally utilized. 

Among the existing numerical modeling approaches, Computational Fluid Dynamics 
(CFD) has shown a strong interest over the past decades for computational wind 
engineering (Blocken, 2014) and, more specifically, for air quality modeling purposes 
in urban areas (Pantusheva et al., 2022). Indeed, such numerical model has been widely 
used to assess the impact of street canyon layouts (Xiaomin et al., 2006), building 
shapes (Li et al., 2020), roof shapes (Kluková et al., 2021), road morphologies 
(Reiminger et al., 2023) or vegetation effects (Santiago et al., 2017) on the air quality. 
CFD, nonetheless, suffers from some practical issues when used to assess air quality in 
real urban areas for engineering purposes. A first questioning factor is about the 
turbulent Schmidt number (𝑆𝑐𝑡) which is a key parameter in CFD modeling of air 
pollution. However, this number is depending on a variety of parameters (e.g.,  
numerical model, turbulence model, building layout, etc.). Previous studies show that 
the turbulent Schmidt number can vary between 0.2 and 1.3, mostly depending on the 
dominant effect in the turbulent mass transport (Tominaga and Stathopoulos, 2007), 
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raising the question of the value to be considered for applied studies. A second issue 
that can be mentioned is the assumption of isothermal conditions (neutral atmospheric 
stratification), facilitating both calculation and results processing, but ignoring the 
impact of atmospheric stability and associated thermal phenomena. This assumption is 
widely accepted (Pantusheva et al., 2022), except in specific study cases where 
significant differences in pollutant concentrations were observed compared to the 
neutral (nonthermal) case results, both leading to the underestimation and 
overestimation of pollutant concentrations (Reiminger et al., 2020a).  

Lastly, there is also a major issue specifically related to NO2 modeling. While NOx can be 
considered as a non-reactive pollutant and directly modeled through CFD (Sanchez et 
al., 2016), NO2 is highly reactive, especially with ozone (O3), and its concentrations 
depend on complex chemical mechanisms as well as on the concentrations of many 
other chemical species. According to Sanchez et al. (2017), these mechanisms which 
also involve air temperature and solar radiation should be accounted for in CFD 
modeling to avoid errors in NO2 concentration predictions, while Jurado et al. (2023b) 
show more recently that simple empirical equations are sufficient to predict NO2 
concentrations from NOx modeled maps. 

Based on these observations, the objective of this study is twofold. Primarily, it aims to 
evaluate the accuracy of straightforward and rapid methods for estimating NO2 
concentrations from NOx CFD dispersion results, bypassing the need for intricate 
explicit chemical mechanisms. Then, it is also to ensure that common CFD modeling 
assumptions, including using 0.7 as the turbulent Schmidt number and only considering 
neutral atmosphere conditions without any thermal effect, are relevant for air quality 
modeling in urban areas, i.e., with the goal of obtaining reliable results. 

To achieve these objectives, several CFD simulations were performed in the city of 
Antwerp, Belgium, and the results of different methodologies for calculating NO2 
concentrations from NOx concentrations were compared with on-site monitoring data. 
All details about the study location, data availability, numerical model used, 
methodologies assessed, and performance criteria considered are given in Section 2. 
Then, the results of the study are exposed in Section 3 and discussed in Section 4. 
Finally, the conclusions of this work are drawn in section 5. 

 
2. Material and methods 
 
2.1. Study location and data availability 
 
The study was carried out in Antwerp, Belgium. This city is characterized by a flat 
topography and a typical urban layout of large Western European cities, with densely 
built-up areas, street canyons and open areas. The Flemish Environment Agency (VMM) 
conducted numerous measurement campaigns and investigations in Antwerp 
throughout 2016. These data include monitored NO2 concentrations, modeled 
background concentrations, calculated traffic emissions and observed building layouts 
and weather data. These data, owned by VMM, have been made available to the 
FAIRMODE (Forum for Air quality Modeling) scientific community. They were utilized 
in this study for the purpose of comparing them against numerical results. 

2.1.1. NO2 air quality measurement campaigns 
 
A monthly measurement campaign has been carried out by the VMM from April 30th to 
May 28th, 2016. In this campaign, NO2 concentrations were monitored at 73 locations of 
various heights (from 2.7 m to 10.8 m) using passive samplers.  
Measurement of NO2 concentration using passive samplers is based on the principle of 
diffusion of nitrogen dioxide onto an absorbent support during the measurement 
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campaign, which is then analyzed in the laboratory, leading to an average concentration 
over the campaign period.  

Collection, validation, and quality control of the sampling have been carried out 
following the procedure described in De Craemer et al. (2020), in line with demands 
and expectations of the European union in terms of quality of results for measurement 
campaigns (maximum deviation of 30 %). Still according to these authors, the actual 
maximum deviation of the passive samplers is less than 10 %. 

Available data correspond to monthly NO2 concentrations at these 73 locations. Figure 
1 displays a satellite image of Antwerp, indicating the location of the passive samplers 
by distinguishing passive samplers located near roads where information on traffic, and 
therefore emissions, is available (depicted in yellow), from those where this 
information is not available (depicted in white). This distinction is used later in the 
results section. 

 

 
 

Figure 1. Satellite map showing the location of passive samplers used in this study. 
Samplers near roads with known traffic information are marked in yellow, while those 

in areas lacking traffic information from the data provider are marked in white. 

 

2.1.2. Background concentration 

The background concentrations correspond to results obtained by the VITO (Flemish 
Institute for Technological Research), using the RIO model (Janssen et al., 2008). This 
model used land use regression and measurement data to assess hourly NO2 and NOx 
background air pollution concentrations. The monthly background concentrations over 
the measurement campaign period are 𝑁𝑂2 𝑏𝑔

̅̅ ̅̅ ̅̅ ̅̅ ̅ = 27.6 µg/m3 and 𝑁𝑂𝑥 𝑏𝑔
̅̅ ̅̅ ̅̅ ̅̅ ̅ = 34,3 µg/m3. 

2.1.3. Emission data 
There are no major industrial sources of air pollution in the study area. The pollution 
observed is therefore mainly influenced by emissions from road traffic and its 
dispersion and accumulation as a function of Antwerp’s urban characteristics (street 
canyons, open areas, etc.). More distant sources of pollutants are, for their part, 
included in the background concentrations (see Section 2.1.2.). 
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Traffic emission data were obtained using the Fastrace Traffic Model (version 2.1), 
considering the official traffic and fleet data of 2016 from the Department for Mobility 
and based on the COPERT 5 emission factors. 
 
2.1.4. Buildings data 
 
The buildings data corresponds of 3D polygons (2D sketch with associated heights) 
acquired from the 3D GRB Informatic Vlaanderen (LOD I)1. Most of the buildings are 
two to three storeys high and are mainly commercial and residential. Large public 
gardens and smaller private gardens are also scattered throughout the area. 
 
2.1.5. Weather data 
 
Weather data were monitored at the Antwerp-Luchtbal measurement station, located 
5 km north of the studied area (coordinates: 51.261, 4.425). These data include hourly 
measurements of averaged wind direction, wind speed, relative humidity, temperature, 
and total radiation and cover the entire year of 2016. 
The resulting wind rose during the measurement campaign as well as the atmospheric 
stability statistics are given in Figure 2.  
 

 
 

Figure 2. Meteorological data including (A) the wind rose giving wind speed and 
direction statistics in Antwerp between April 30th and May 28th, 2016 (N, North, 

signify that wind is coming from the North and going to the South) and (B) 
atmospheric stability statistics. 

 
2.2. Numerical model 
 
2.2.1. Software and calculation methodology 
 

Simulations were performed through OpenFOAM 9, working in parallel calculation on 
a 32-core Intel® Xeon(R) Silver 4216 CPU E5-2670 2.10 GHz computing machine under 
Ubuntu 20.04.5 LTS.  

The CFD solver used is pimpleFoam, a transient forced convection solver from the 
OpenFOAM library. This solver is capable of solving the incompressible Navier-Stokes 
equations for isothermal flows, thereby limiting the modeling to neutral atmospheric 

 
1 Data available here: https://overheid.vlaanderen.be/grb-3dgrb 
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stability. However, according to Figure 2 (B), this condition is only accurate 38% of the 
time, which is an additional point of investigation in this work. The solver has been 
modified to account for passive pollutant dispersion since it does not natively allow it. 

The URANS (Unsteady Reynolds-Averaged Navier-Stokes) methodology has been used 
to solve the equations, as substantially better results can be achieved using transient 
calculation rather than steady calculation (Tominaga and Stathopoulos, 2017). 
Employing a RANS methodology introduces the Reynolds Stress Tensor term in the 
Navier-Stokes momentum equation, then requiring the choice of a turbulent closure 
scheme. The Renormalization Group (RNG) k-ε model from Yakhot et al. (1992) has 
been selected to solve this new term, since better results can be achieved using it 
(Papageorgakis and Assanis, 1999) while much more complex closure schemes may not 
improve the results but increase calculation costs (Koutsourakis et al., 2012). 

The modified pimpleFoam solver, the use of the URANS methodology and the RNG k-ε 
turbulence closure scheme for pollutant dispersion purpose were validated in a 
previous study on both velocity and pollutant concentration fields based on 
experimental data (Reiminger et al., 2020c). 

 
2.2.2. Governing equations 
 
The incompressible Navier-Stokes equations solved by the pimpleFoam solver are given 
as follows, with (1) the continuity equation and (2) the momentum equation: 

∇. 𝑢 = 0         (1) 

𝜕𝑢

𝜕𝑡
+ 𝑢. 𝛻𝑢 = −

1

𝜌
𝛻𝑝 + 𝜈𝛥𝑢         (2) 

where 𝑢 is the velocity [m.s-1], 𝑡 the time [s], 𝜌 the density [kg.m-3], 𝑝 the pressure [Pa 
or kg.m-1.s-2] and 𝜈 the kinematic viscosity [m².s-1] 
 
The advection-diffusion equation, governing passive scalar transport, was used to 
model pollutant dispersion since no explicit chemical reactions were considered in this 
study. The corresponding equation is given in equation (3), as follows: 

𝜕𝐶

𝜕𝑡
 +  ∇. (𝐶𝑢) −  ∇. [(𝐷𝑚 +

𝜈𝑡

𝑆𝑐𝑡

) ∇𝐶] =  𝐸         (3) 

where 𝐶 is the pollutant concentration [g.m-3], 𝑡 is the time [s], 𝑢 is the velocity [m.s-1], 
𝐷𝑚  is the molecular diffusion coefficient [m-2.s-1], 𝜈𝑡  is the turbulent diffusivity [m-2.s-1], 
𝑆𝑐𝑡  is the turbulent Schmidt number [-] and 𝐸 is the emission of pollutants [g.s-1]. 
 
While the turbulent Schmidt number can vary between 0.2 and 1.3 depending on the 
case to be modeled (Tominaga and Stathopoulos, 2007), an intermediate value of 0.7 
frequently found in the literature (Rivas et al., 2019; Tominaga and Stathopoulos, 2017; 
Yuan et al., 2017) was used, which is an additional point of investigation in this work. 
 
2.2.3. Computational domain and boundary conditions 
 
Simulations were performed considering fully three-dimensional geometries, following 
traffic and building layout data available in Antwerp (see Section 2.1.3 and 2.1.4). An 
overview of the 3D numerical model is given in Figure 3, with, in red, the roads where 
emission data were available and modeled. 
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Figure 3. Overview of the 3D numerical model with (A) a top view and (B) a three-
quarter view (red lines correspond to roads for which emission data were available 

and were modeled). 

Mesh size of 1 m near wall boundaries (buildings and ground) were used as in Sanchez 
et al., (2017) or Vranckx et al. (2015), with, nevertheless, a higher refinement of 0.5 m 
close to pollutant sources (roads). This mesh resolution yielded numerical models 
comprising around 17 million meshes. 
All the recommendations concerning domain size and boundary conditions given in 
COST Action 732 (Franke et al., 2007) were followed for each simulation performed, 
including:  

- Inlet boundaries located 5𝐻𝑚𝑎𝑥  away from the first building, where velocity (4) 
and turbulence (5-6) profiles specified according to Richards and Hoxey 
(1993) and Richards and Norris (2011); 

- Outlet boundaries located 5𝐻𝑚𝑎𝑥  away from the last building, where a free 
stream condition is applied to allow a fully development of the flow; 

- Lateral boundaries located 5𝐻𝑚𝑎𝑥  away from the last building, where 
symmetry conditions are applied; 

- Top boundaries located 5𝐻𝑚𝑎𝑥  away from the higher building (5𝐻𝑚𝑎𝑥  from the 
ground), where a symmetry condition is applied. 

- Ground and building wall boundaries where no-slip conditions (𝑈 = 0 m.s-1) 
are applied. 

𝑈 =
𝑢∗

𝜅
𝑙𝑛 (

𝑧 + 𝑧0

𝑧0

)         (4) 

𝑘 =
𝑢∗

2

√𝐶µ

         (5) 

𝜀 =
𝑢∗

3

𝜅. 𝑧
         (6) 

 

where 𝑈 is the wind velocity [m.s-1], 𝑘 is the turbulent kinetic energy [m2.s-2], 𝜀 is the 
turbulence dissipation rate [m2.s-3], 𝑢∗ is the friction velocity [m.s-1], 𝜅 is the von 
Kármán constant [-] taken to 0.41, 𝑧 is the altitude [m], 𝑧0 is the roughness height [m] 
taken as 0.5 m to stand for built-up areas (Hahmann et al., 2015; Troen and Petersen, 
1989) and 𝐶µ is a CFD constant [-] taken as 0.085. 

 
Traffic exhaust emissions were modeled using volumetric pollutant sources along the 
roads and over one mesh height (0.5 m), considering emissions of each road segment.  
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Simulations were performed using second order schemes for all divergent, gradients 
and Laplacians terms and were run until full convergence, leading to residuals under 
10-5. 
 
Lastly, it should be noted that the simulations were conducted under isothermal 
conditions (neutral atmosphere) and without traffic-induced turbulence. Consequently, 
pollutant concentrations are solely dependent on wind direction (Schatzmann and 
Leitl, 2011). Thus, a total of 18 wind directions were modeled using a 20° step (0°N, 20°, 
…, 320°N and 340°N) considering a wind speed of 1.5 m.s-1 at 10 m height. 
Concentrations from non-simulated wind speeds (𝑈𝐻=10𝑚 ≠ 1.5 m.s-1) were then 
obtained following equation (7) (Reiminger et al., 2020b). 
 

𝐶𝑢 = 𝑈𝑟𝑒𝑓 .
𝐶𝑟𝑒𝑓

𝑢
        (7) 

where 𝐶𝑢 is the pollutant concentration for the wind velocity 𝑢 not simulated and 𝐶𝑟𝑒𝑓 

the reference pollutant concentration for the simulated wind velocity 𝑈𝑟𝑒𝑓 .  

 
2.3. Methodologies to compute NO2 from NOx 

2.3.1. NO2/NOx models 

Considering the hourly wind speed and wind direction data available from April 30th to 
May 28th, 2016, a total of 696 hourly NOx concentration maps were obtained from the 
18 CFD simulations. Then, several methods were considered and compared to assess 
NO2 concentrations from the NOx maps results. These methods will hereafter be 
referred to as "NO2/NOx models". 
The NO2/NOx models considered in this work include: 

- A simplified chemical mechanism following the Leighton’s relationship 
(Leighton, 1961) given in equation (8). This mechanism, called the 
Photostationary Steady States (PSS) equilibrium, can be solved following 
equations (9-11), and will be referred as PSS model in the results section. 
 

[𝑂3] =
𝐽𝑁𝑂2

[𝑁𝑂2]

𝑘𝑂3
[𝑁𝑂]

        (8) 

[𝑁𝑂2]𝑃𝑆𝑆 = [𝑁𝑂𝑥]
𝑘𝑂3

[𝑂3]

𝐽𝑁𝑂2

(1 +
𝑘𝑂3

[𝑂3]

𝐽𝑁𝑂2

)

−1

        (9) 

𝐽𝑁𝑂2
= 0.0167. 𝑒−0.575.sec (𝜃)        (10) 

𝑘𝑂3
=

15.33

𝑇
. 𝑒−1450/𝑇        (11) 

 
where [𝑁𝑂2], [𝑁𝑂], [𝑁𝑂𝑥] and [𝑂3] are nitrogen dioxide, nitrogen monoxide, 
nitrogen oxides and ozone concentrations [g.m-3], respectively, 𝐽𝑁𝑂2

 the 

photolysis frequency [s-1] from Dickerson et al. (1982) with 𝜃 the solar zenithal 
angle [-] and 𝑘𝑂3

 the reaction rate between NO, O3, NO2 and O2 [ppb-1.s-1] from 

(Hanrahan, 1999) with 𝑇 the temperature [K]. 
 

- The polynomial-logarithmic empirical function from Derwent and Middleton 
(1996) linking NO2 concentrations to NOx concentrations, given in equations 
(12-13), which is referred to as DE model in the result section. 
 

[𝑁𝑂2] = (2.166 −
[𝑁𝑂𝑥]

1.91
(1.236 − 3.348 𝐴 + 1.933 𝐴2 − 0.326 𝐴3))

× 1.91        (12) 

𝐴 = 𝑙𝑜𝑔10([𝑁𝑂𝑥]/1.91)        (13) 
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where [𝑁𝑂2] and [𝑁𝑂𝑥] are nitrogen dioxide and nitrogen oxides 
concentrations [g/m3], respectively. 

 
- The rational empirical function from Bächlin et al. (2008) linking NO2 

concentrations to NOx concentrations, given in equations (14) , which is 
referred to as BA model in the result section. 

[𝑁𝑂2] =
29. [𝑁𝑂𝑥]

[𝑁𝑂𝑥]𝑎 + 35
+ 0.217 [𝑁𝑂𝑥]        (14) 

where [𝑁𝑂2] and [𝑁𝑂𝑥] are nitrogen dioxide and nitrogen oxides 
concentrations [g/m3], respectively. 
 

It should be noted that the empirical functions given in equations (12), (13) and (14) 
were previously mentioned and studied by Jurado et al. (2020) to assess NO2 
concentrations from monitored NOx concentrations and lead to an overall deviation of 
10% over the whole of France. 
 
2.3.2. Calculation decomposition 
 
The NO2/NOx models can then be applied at various stages of the calculation process to 
generate the maps of averaged NO2 concentrations, which are influenced by: 

- When the hourly results are averaged to obtain the monthly concentrations: 
before (17-18) or after (15-16) calculating NO2 from NOx with the NO2/NOx 
models. 

- How the background concentration is included: before NO2 calculation using 
NOx background concentration (15, 17), or after, using NO2 background 
concentration (16, 18). 

-  
The four equations combining these two possibilities are given hereafter in equations 
(15-18) and were all considered in this work for comparison purpose. These different 
ways of breaking down NO2 calculations will be referred to as "calculation 
decomposition". 

[𝑁𝑂2]̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
∑ 𝑓(

𝑛

ℎ=1

[𝑁𝑂𝑥]ℎ + [𝑁𝑂𝑥]𝑏𝑔,ℎ)       (15) 

[𝑁𝑂2]̅̅ ̅̅ ̅̅ ̅̅ =
1

𝑛
∑ 𝑓(

𝑛

ℎ=1

[𝑁𝑂𝑥]ℎ) +  
1

𝑛
∑[𝑁𝑂2]𝑏𝑔,ℎ

𝑛

ℎ=1

      (16) 

[𝑁𝑂2]̅̅ ̅̅ ̅̅ ̅̅ = 𝑓 (
1

𝑛
∑[𝑁𝑂𝑥]ℎ

𝑛

ℎ=1

+ [𝑁𝑂𝑥]𝑏𝑔,ℎ)      (17) 

[𝑁𝑂2]̅̅ ̅̅ ̅̅ ̅̅ = 𝑓 (
1

𝑛
∑[𝑁𝑂𝑥]ℎ

𝑛

ℎ=1

)  + 
1

𝑛
∑[𝑁𝑂2]𝑏𝑔,ℎ

𝑛

ℎ=1

     (18) 

 
where 𝑓 is one of the three NO2/NOx models described in Section 2.3.1,  [𝑁𝑂2]̅̅ ̅̅ ̅̅ ̅̅  is the 
monthly NO2 concentration, [𝑁𝑂𝑥]ℎ is the hourly modeled NOx concentration, [𝑁𝑂𝑥]𝑏𝑔,ℎ 

is the hourly NOx background concentration and [𝑁𝑂2]𝑏𝑔,ℎ  is the hourly NO2 

background concentration. All these concentrations are in µg/m3. 
 
In the results section, the decompositions methods given in equation (15) is referred to 
as H. NOx, equation (16) to H. NO2, equation (17) to Avg. NOx and equation (18) to Avg. 
NO2. 
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2.4. Performance criteria 
 
Several performance criteria were employed to evaluate and compare the effectiveness 
of the NO2/NOx models and calculation decompositions against the data from the 
measurement campaign, including: 𝑭𝑨𝑪𝟐 (factor of modeled values within a factor of 
two of observations), 𝑭𝑩 (Fractional Bias), 𝑴𝑭𝑩 (Mean Fractional Bias), 𝑴𝑭𝑬 (Mean 
Fractional Error), 𝑵𝑴𝑺𝑬 (Normalized Mean Squared Error), 𝑴𝑹𝑬 (Mean Relative 
Error), 𝑹 (Pearson correlation coefficient), 𝑵𝑺𝑫 (Normalized Standard Deviation) and 
𝑻𝒂𝒓𝒈𝒆𝒕. The corresponding equations are detailed in Appendix A, and all the results 
for these parameters are given to make it easier to compare the results of this work 
with others. 
 
3. Results 
 
3.1. Quantitative comparison of the NO2/NOx models and calculation decomposition 
results considering the whole dataset 

Predicted NO2 concentrations were initially compared to the complete set of measured 
NO2 concentrations using observation versus prediction graphs. The corresponding 
graphs are presented in Figure 4 for each NO2/NOx model and calculation 
decomposition method considered in this study. Additionally, their corresponding 
correlation coefficients 𝑅 and mean relative errors 𝑀𝑅𝐸𝑠 were calculated and given in 
the figure.  

Firstly, by comparing the use of the NO2 or NOx background concentrations, it can be 
observed that predictions are systematically closer to the observed NO2 concentrations 
when the background NO2 concentration is considered rather than that of NOx. Indeed, 
considering the NOx background concentration led to 𝑀𝑅𝐸𝑠 ranging from 38 % to 63 %, 
while these errors are two to three times lower (between 16 % and 19 %) when 
considering the NO2 background concentration instead. The correlation coefficients in 
both cases are similar, ranging from 0.73 to 0.75.  

Secondly, comparing the use of hourly or averaged NOx modeled concentrations in the 
decomposition model, the results are globally better using the averaged values rather 
than using the hourly ones. For example, considering the Derwent and Middleton 
NOx/NO2 model with the NOx background concentration led to 38 % of mean relative 
error with averaged concentration, while 50 % of error is obtained with the hourly 
concentrations. This observation holds when considering the NO2 background 
concentration. However, it is somewhat less pronounced in the case of the Bachlin et al. 
model, while there is no discernible difference for the Derwent and Middleton model. 
Finally, if we compare the results of the NO2/NOx models one by one considering the 
same calculation decomposition method, it appears that all the models lead to results 
with errors of the same order of magnitude. The best predictions based on 𝑅, 𝑀𝑅𝐸𝑠 and 
predicted versus observed plots are obtained considering the Bachlin et al. NO2/NOx 
model (eq. 14), and the calculation decomposition method which uses averaged 
predicted concentration values and NO2 background concentration (eq. 18).  

Additional performance criteria have been calculated to go further in the investigation 
of the best models and methods to be used. These criteria as well as 𝑅 and 𝑀𝑅𝐸𝑠 already 
discussed are given in Table 1. According to the results, some criteria do not necessarily 
provide sufficient information to rank the different models or methods. Indeed, as 
previously, it is the case for the correlation coefficient (𝑅), but it is also true for the 
factor of modeled values within a factor of two of observations (𝐹𝐴𝐶2) which are 
ranging from 0.97 to 1.00. Then, other criteria such as 𝐹𝐵, 𝑀𝐹𝐵, 𝑀𝐹𝐸, 𝑁𝑀𝑆𝐸 and 𝑀𝑅𝐸 
tend to give around the same results when considering a given calculation 
decomposition method, whatever the NO2NOx model considered. They can therefore be 
used to rank the calculation decomposition methods, but not the NOx/NO2 models. The 
last criteria, including 𝑁𝑆𝐷 and 𝑇𝑎𝑟𝑔𝑒𝑡, give different results whatever the model or 
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method considered. They therefore appear to be the most stringent criteria. According 
to the 𝑇𝑎𝑟𝑔𝑒𝑡, the photo stationary steady-state equilibrium (PSS) appears to be the 
best NO2/NOx model when using hourly predicted concentrations, while the Derwent 
and Middleton model is the best when using averaged concentrations. Based on the 
𝑇𝑎𝑟𝑔𝑒𝑡 criterion, the second option appears to be the more favorable of the two. 

   

 
 

Figure 4. Comparison between observed and modeled NO2 concentrations as a 
function of the NOx/NO2 model (PSS, Bachlin et al. or Derwent and Middleton models) 

and the calculation decomposition (hourly decomposition with NOx or NO2 
background concentration or averaged decomposition with NOx or NO2 background 

concentration) considered. 
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Table 1. Comparison of the NOx/NOx models performances as a function of the 
calculation decomposition used. 

Calculation 
decomposition 

NOx/NO2 model 𝑭𝑨𝑪𝟐 𝑭𝑩 𝑴𝑭𝑩 𝑴𝑭𝑬 𝑵𝑴𝑺𝑬 𝑴𝑹𝑬 𝑹 𝑵𝑺𝑫 𝑻𝒂𝒓𝒈𝒆𝒕 

 PSS 0.97 0.40 0.54 0.54 0.19 0.49 0.74 0.84 1.96 

Hourly, NOx 
background, eq. (15) 

Derwent and Middleton 1.00 0.40 0.51 0.51 0.18 0.50 0.73 1.37 3.16 

 Bächlin et al. 0.97 0.48 0.64 0.64 0.26 0.63 0.73 1.53 3.97 

Hourly, NO2 
background, eq. (16) 

PSS 1.00 0.14 0.18 0.20 0.04 0.19 0.75 0.78 0.96 

Derwent and Middleton 1.00 0.16 0.18 0.20 0.04 0.19 0.75 0.98 1.18 

Bächlin et al. 1.00 0.15 0.18 0.19 0.04 0.19 0.74 1.04 1.23 

Averaged, NOx 
background, eq. (17) 

Derwent and Middleton 1.00 0.32 0.40 0.40 0.12 0.38 0.74 1.06 2.08 

Bächlin et al. 1.00 0.43 0.56 0.56 0.21 0.55 0.74 1.40 3.35 

Averaged, NO2 
background, eq. (18) 

Derwent and Middleton 1.00 0.13 0.16 0.20 0.04 0.19 0.74 0.74 0.88 

Bächlin et al. 1.00 0.11 0.14 0.17 0.03 0.16 0.73 0.82 0.91 

 Metrics’ best value 1 0 0 0 0 0 1 1 0 

 
Identifying the optimal combination of NO2/NOx models and calculation decomposition 
methods is challenging due to the multitude of performance criteria considered. 
Consequently, a statistical method known as the “critical difference diagram”, 
introduced by Ismail Fawaz et al. (2019), was employed. This method facilitates the 
comparison of different models by ranking them according to their performance on a 
given set of criteria (a score of 1 being the best result and 10 the worst). This ranking, 
which reflects all the performance criteria considered in this work, can then be used to 
establish critical difference diagrams, as given in Figure 5.  
 
The results indicate that the most effective combinations consistently considered NO2 
background concentrations rather than NOx, confirming previous findings. Looking 
specifically at this subgroup, and despite their score being close, the best combinations 
use averaged predicted concentrations and not hourly ones. Thus, the best calculation 
decomposition method is the one using both averaged concentrations and NO2 
background concentration (eq. 18). When using this method specifically, the best 
NOx/NO2 model is the Bachlin et al. one, resulting in an overall error to 16 % compared 
to the measured NO2 concentrations. Lastly, it appears that the empirical functions 
considered in this study (Derwent and Middleton and Bachlin et al. models) outperform 
the photostationary steady-state equilibrium.  
 

 

Figure 5. Critical difference diagram of the performance of combinations between 
NO2/NOx model and calculation decomposition considering the whole experimental 
dataset (BA: Bachlin et al. model (eq. 14), DE: Derwent and Middleton model (eq. 12-13), 
PSS: Photostationary Steady State model (eq. 9-11), H. NOx: Hourly decomposition with 
NOx background (eq. 15), H. NO2: Hourly decomposition with NO2 background (eq. 16), 
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Avg. NOx: Averaged decomposition with NOx background (eq. 17) and Avg. NO2: Averaged 
decomposition with NO2 background (eq. 18). 
 
3.2. Quantitative comparison of the NO2/NOx models and calculation decompositions 
results only considering the passive samplers located nearby known traffic emissions. 

In this work, microscale modeling is employed through computational fluid dynamics, 
yielding results that are highly localized and heavily reliant on available information, 
such as traffic-related emissions. Since traffic emissions are not known for every road 
segment, and passive sensor results are available where this information is lacking, the 
predicted NO2 concentrations were specifically compared with measured NO2 
concentrations from passive sensors located near roads with known traffic emissions. 
The results of the performance criteria obtained for this specific subset of measured 
data are given in Table 2.  

Based on the outcomes obtained, the same findings as previously noted can be made 
regarding the ranking capacity of the performance criteria : 𝐹𝐴𝐶2 and 𝑅 are not suitable 
to rank the models or methods; 𝐹𝐵, 𝑀𝐹𝐵, 𝑀𝐹𝐸, 𝑁𝑀𝑆𝐸 and 𝑀𝑅𝐸 can be used principally 
to rank the calculation decomposition methods; and 𝑁𝑆𝐸 and 𝑇𝑎𝑟𝑔𝑒𝑡 can be used to 
rank the NO2/NOx models.  

Improved results were globally obtained across all criteria compared to previous 
findings. This enhancement can be attributed to the observation that the most 
significant variations between modeled and measured concentrations occur in areas 
where emissions are unspecified in the numerical model due to unavailability. 

 
Table 2. Comparison of the NOx/NOx models performances as a function of the 
calculation decomposition considered and only considering the passive samplers 
located nearby roads where traffic information was available. 

Calculation 
decomposition 

NOx/NO2 model 𝑭𝑨𝑪𝟐 𝑭𝑩 𝑴𝑭𝑩 𝑴𝑭𝑬 𝑵𝑴𝑺𝑬 𝑴𝑹𝑬 𝑹 𝑵𝑺𝑫 𝑻𝒂𝒓𝒈𝒆𝒕 

 PSS 1.00 0.28 0.38 0.38 0.11 0.33 0.78 0.85 1.34 

Hourly, NOx 
background, eq. (15) 

Derwent and Middleton 1.00 0.43 0.56 0.56 0.21 0.41 0.77 1.59 3.22 

 Bächlin et al. 1.00 0.34 0.42 0.42 0.14 0.55 0.77 1.45 2.56 

Hourly, NO2 
background, eq. (16) 

PSS 1.00 0.05 0.08 0.15 0.02 0.14 0.78 0.80 0.67 

Derwent and Middleton 1.00 0.09 0.11 0.15 0.02 0.14 0.78 1.04 0.84 

Bächlin et al. 1.00 0.09 0.11 0.15 0.02 0.14 0.78 1.11 0.90 

Averaged, NOx 
background, eq. (17) 

Derwent and Middleton 1.00 0.25 0.30 0.30 0.08 0.29 0.77 1.11 1.55 

Bächlin et al. 1.00 0.38 0.48 0.48 0.17 0.46 0.78 1.45 2.69 

Averaged, NO2 
background, eq. (18) 

Derwent and Middleton 1.00 0.03 0.06 0.15 0.02 0.14 0.78 0.76 0.64 

Bächlin et al. 1.00 0.03 0.05 0.14 0.02 0.13 0.76 0.89 0.68 

 Metrics’ best value 1 0 0 0 0 0 1 1 0 

 
A critical difference diagram has also been built based on these new results and is given 
in Figure 6. Again, the best combinations between NO2/NOx models and calculation 
decomposition methods correspond to those where NO2 background concentrations 
are used. However, this time, it is no longer obvious whether it is better to consider 
averaged predicted concentrations rather than hourly ones, or to use empirical 
methods instead of the PSS. Indeed, while the combination leading to the best results is 
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still the Bachlin et al. model (eq. 14) associated with averaged predicted concentrations 
and NO2 background concentrations (eq. 18), this option is directly followed by the 
combination of PSS (eq. 9-11) and hourly predicted concentrations (eq. 16). The PSS, 
inherently more complex than the empirical functions, appears to be more sensitive to 
the absence of input data, such as traffic emissions. 
 

 

Figure 6. Critical difference diagram of the performance of combinations between 
NO2/NOx model and calculation decomposition considering (A) all samplers and (B) 
only the samplers located nearby roads where traffic data were available (BA: Bachlin 
et al. model (eq. 14), DE: Derwent and Middleton model (eq. 12-13), PSS: Photostationary 
Steady State model (eq. 9-11), H. NOx: Hourly decomposition with NOx background (eq. 
15), H. NO2: Hourly decomposition with NO2 background (eq. 16), Avg. NOx: Averaged 
decomposition with NOx background (eq. 17) and Avg. NO2: Averaged decomposition with 
NO2 background (eq. 18). 
 
3.3. Comparison of the monthly NO2 concentration maps obtained using two extreme 
combinations of NOx/NO2 models and calculation decomposition methods. 

Finally, monthly modeled NO2 concentration maps were generated and compared using 
two NO2/NOx models: the PSS and the Bachlin et al. model, along with various 
calculation decomposition methods.  

According to the results, which can be seen in Figure 7 (A1-B1), NO2 concentrations are 
globally underestimated when considering the NOx background concentration, even in 
locations where traffic emissions are known. These underestimations are no longer 
observed when considering background NO2 concentration, as shown in Figure 7 (A2-
B2), except for areas where sensors are located near roads with unknown traffic 
emissions (sensors mainly located in the bottom left-hand corner or in the center right-
hand corner of the study).  
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Figure 7. Monthly NO2 concentration maps obtained by averaging the 696 hourly 
maps (BA: Bachlin et al. model (eq. 14), PSS: Photostationary Steady State model (eq. 9-

11), H. NOx: Hourly decomposition with NOx background (eq. 15), H. NO2: Hourly 
decomposition with NO2 background (eq. 16), and Avg. NO2: Averaged decomposition 

with NO2 background (eq. 18). 
 
When comparing the results obtained between the two NO2/NOx models for the same 
calculation decomposition method (except for PSS which always need hourly data), 
such as comparing Figure 7 (A1) with (B1) or Figure 7 (A2) with (B2), it becomes 
evident that PSS led globally to higher NO2 concentrations than the Bachlin et al. model. 
This contrast can be particularly seen in Figure 7 (A1) where NO2 concentrations 
exceeding 70 µg/m3 are obtained with the PSS model, while the highest concentrations 
are around 50 µg/m3 with the Bachlin et al. model as shown in Figure 7 (B1). According 
to the results shown in Figure 7 (A2), the PSS model tends to overestimate the higher 
concentrations, with NO2 concentrations higher than 70 µg/m3 at locations where 
traffic emissions are known, while sensors show concentrations ranging from 55 to 
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60 µg/m3. The Bachlin et al. model achieved closer results than the PSS model, with NO2 
concentrations around 60 µg/m3 at the exact same location.    
Lastly, regardless of the decomposition method or the NO2/NOx model considered, 
underestimations of NO2 concentrations are systematically observed at some specific 
locations, for example in the southern part of the area. These locations correspond to 
sensors positioned near roads where traffic data, and therefore emissions, are not 
known (see Figure 1 for the detailed locations), thus explaining the underestimation of 
NO2 concentrations observed. 
 
4. Discussion 
 

All the simulations were performed considering an isothermal atmosphere (i.e., neutral 
atmospheric stability), and good results with around 15 % of error overall were 
obtained when using the right combination of NO2/NOx model and calculation 
decomposition method. This result is interesting because a neutral atmosphere was 
observed for only 38% of the total duration of the measurement campaign, according 
to meteorological data. Utilizing an isothermal model is more convenient for various 
reasons, such as reduced calculation time, improved convergence, and the ability to 
interpolate results based on wind speed, among others. However, in this case, the three 
stability states (stable, neutral, and unstable) were roughly equally represented 
(~33%). In this way, underestimations and overestimations resulting from modeling a 
neutral case rather than stable and unstable cases could have offset each other. Further 
work could be conducted, at a different location where stability states are not equally 
represented, or ideally, at the same location but during months when stable or unstable 
atmospheres are more predominant.  

Additionally, previous results raise questions about the general applicability of the 
models and methods assessed in this study. Indeed, they have only been tested using 
one given CFD model and no other CFD models or alternative modeling approaches. 
However, recent work using artificial intelligence modeling for air quality modeling has 
shown that the use of empirical methods such as those used in this study, combined 
with an hourly calculation of NO2 concentrations and the use of a background NO2 
concentration, led to the same order of magnitude of errors (~ 20 %) (Jurado et al., 
2023b). It is therefore reasonable to be expected that these results will be relevant to a 
wider range of micro-scale models. 

It is also important to bear in mind that the deviation between modeled and measured 
concentrations (< 15%) using the optimum NO2/NOx model and the optimum 
decomposition method is also dependent on the various choices inherent to the 
numerical model, and particularly the turbulent Schmidt number (set to 0.7) and the 
turbulence model (RNG k-epsilon) used. One of the aims of this study was to assess the 
validity of using classical assumption in a real study case. To optimize the model and 
refine the results, further investigations should be considered by a sensitivity study to 
determine the best turbulent Schmidt number and turbulence model to use. Therefore, 
it is important to note that modifications in these parameters would lead to variations 
in the results, both in terms of increasing the deviation between measured and 
modelled results or reducing it. 

Finally, multiple performance criteria were calculated in this study, including criteria 
where acceptance thresholds are given for urban dispersion model evaluation and used 
to validate numerical air quality models on a regular basis. The criteria and 
corresponding threshold values for urban cases are |𝐹𝐵| ≤ 0.67,  𝑁𝑀𝑆𝐸 ≤ 6 and 𝐹𝐴𝐶2 
≥ 0.3 (Hanna and Chang, 2012). Based on the study’s results, all considered NO2/NOx 
models and calculation decomposition methods met the acceptance criteria. This 
includes combinations of models and methods that resulted in an average error 
exceeding 50%, surpassing the European Union’s minimum accuracy threshold of 30% 
for annual NO2 concentration modeling (EU, 2008). Consequently, these initially 
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established thresholds, meant to validate Lagrangian and Gaussian models, may not be 
suitable for assessing the quality of micro-scale air quality models, such as 
computational fluid dynamics or artificial intelligence models. Alternative criteria or 
acceptance thresholds should be considered instead. For example, the criteria and 
corresponding acceptance thresholds of 𝑇𝑎𝑟𝑔𝑒𝑡 ≤ 0.65 (target value) and 𝑇𝑎𝑟𝑔𝑒𝑡 ≤ 0.8 
(critical value) (Thunis et al., 2012) would be better indicators, as being more stringent, 
since only a few combinations of NO2/NOx models and calculation decomposition 
methods assessed in this work complied with. In any case, these results also underscore 
the importance of using multiple criteria simultaneously, as relying on a single criterion 
may lead to potentially misleading conclusion. 

 
5. Conclusion 
 
Simple and fast methods for calculating NO2 concentrations maps from NOx 
computational fluid dynamics results were evaluated through 18 numerical simulations 
performed under classical CFD air quality modeling assumptions. The main conclusions 
are as follows. 

(a) Fast and simple methods such as photostationary steady-state equilibrium 
(PSS) or Derwent and Middleton and Bachlin et al. empirical functions can be 
used to assess NO2 concentrations from NOx CFD results. This can be achieved 
without having to consider complex chemical mechanisms, while satisfying air 
quality model acceptance criteria.   

(b) The best results are achieved using the Bachlin et al. empirical function after 
averaging the hourly modeled NOx concentration and adding the NO2 
background concentrations at the final stage, leading to errors of around 16 % 
and up to 14 % when all traffic emissions are known. One notable advantage is 
that it only requires NOx concentration as an input parameter. 

(c) PSS gives good results but tends to overestimate NO2 concentrations while 
needing numerous additional parameters in addition to the NOx concentration 
(O3 concentration, temperature, etc.). 

(d) Classical CFD air quality modeling assumptions such as neutral atmosphere 
modeling (isothermal conditions), or taking a turbulent Schmidt number of 0.7, 
led to results that meet air quality model acceptance criteria, with less than 
20% error overall when using the correct calculation decomposition method. 
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