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Abstract: Numerical models are valuable tools to assess air pollutant concentrations in 
cities which can be used to define new strategies to achieve sustainable cities of the 
future in terms of air quality. Numerical results are however difficult to be directly 
compared to air quality standards since they are usually valid only for specific wind 
speed and direction while some standards are on annual values. The purpose of this 
paper is to present existing and new methodologies to turn numerical results into mean 
annual concentrations and discuss their limitations. To this end, methodologies to 
assess wind speed distribution based on wind rose data are presented first. Then, 
methodologies are compared to assess mean annual concentrations based on numerical 
results and on wind speed distributions. According to the results, a Weibull distribution 
can be used to accurately assess wind speed distribution in France, but the results can 
be improved using a sigmoid function presented in this paper. It is also shown that using 
the wind rose data directly to assess mean annual concentrations can lead to 
underestimations of annual concentrations. Finally, the limitations of discrete 
methodologies to assess mean annual concentrations are discussed and a new 
methodology using continuous functions is described. 

 

Keywords: Wind speed distribution, Wind rose, Mean annual concentration, Air 
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Highlights:  

• Wind speed distribution can be assessed with a wind rose and a Weibull 
function. 

• A sigmoid function can improve the wind speed distribution assessment. 
• Annual concentrations can be calculated using both discrete and continuous 

methods. 
• Discrete methods have limitations that must be taken into account.  
• The continuous method has fewer limitations but must be set up with care.   
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1. Introduction 

Over the past decades, outdoor air pollution has become a major issue, especially in 
highly densified urban areas where pollutant sources are numerous and air pollutant 
emissions high. In order to protect people from excessive exposure to air pollution, 
which can cause several diseases (Anderson et al., 2012; Kim et al., 2015), the World 
Health Organization (WHO) have recommended standard values that must not be 
exceeded for different pollutants such as nitrogen dioxide (NO2) and particulate matter 
(EU, 2008; WHO, 2017) to protect population health, and the European Union (EU) 
decided to respect the same or other standards depending on the air pollutants. Among 
the different types of values given as standards, studies have shown that annual 
standards are generally more constraining and harder to reach than the other 
standards (Chaloulakou et al., 2008; Jenkin, 2004; Yuan et al., 2019). 

In the meantime, recent studies have shown that the indoor air quality is strongly 
correlated with the outdoor one: while for nitrogen dioxide a 5% increase in indoor air 
pollutant concentrations can be expected for only a 1% increase in outdoor 
concentrations (Shaw et al., 2020), for particulate matters such as PM2.5 the outdoor 
concentration can contribute from 27% to 65% of the indoor concentration (Bai et al., 
2020). Being able to assess outdoor pollutant concentrations is therefore a necessity to 
improve air quality in the outdoor built environment, but also in the indoor one (Ścibor 
et al., 2019). 

Annual concentrations can be assessed using both on-site monitoring and numerical 
modeling. On site monitoring requires measurements over long periods to be able to 
assess mean annual concentrations of pollutants, although a recent study has shown 
that mean annual concentration of NO2 can be assessed using only one month of data 
(Jurado et al., 2020), which significantly reduces the measurement time required. 
Monitoring nonetheless has other limitations: it does not allow assessing the future 
evolution of the built environment or pollutant emissions, thus, limiting its applicability 
to achieve the smart sustainable cities of the future as defined by Bibri and Krogstie 
(2017). Numerical modelling can overcome these limitations and can help define new 
strategies to improve air quality in cities combining wind data, various air pollution 
scenarios and urban morphologies (Yang et al., 2020). Among the several models 
currently available, Computational Fluid Dynamics (CFD) has shown great potential for 
modeling pollutant dispersion from traffic-induced emissions by including numerous 
physical phenomena such as the effects of trees (Buccolieri et al., 2018; Santiago et al., 
2019; Vranckx et al., 2015) and heat exchanges (Qu et al., 2012; Toparlar et al., 2017; 
Wang et al., 2011) on the scale of a neighborhood. However, this type of numerical 
result cannot be directly compared with the  annual standards. Methodologies designed 
to assess mean annual concentrations based on numerical results can be found in the 
literature (Rivas et al., 2019; Solazzo et al., 2011; Vranckx et al., 2015), but further work 
is required to improve them and assess their limits. 

The aim of this study is to provide tools and methodologies to assess mean annual 
concentrations based on numerical results and wind rose data to improve air quality in 
built environment and cities. It is firstly to evaluate whether it is possible to assess 
continuous wind speed distributions based on wind rose data. To do so, a statistical law 
called Weibull distribution is compared with a new sigmoid-based function built for the 
purpose of this study. Secondly, it is to present and compare a discrete methodology 
usually used to assess mean annual concentrations based on numerical results with a 
continuous methodology built for the purpose of this study, and to discuss their 
respective advantages and limitations. The data used for the wind speed distribution 
assessments, the area modeled and the CFD model used for illustration purposes are 
presented in Section 2.  Then, the description and the comparison of the different 
methodologies are presented in Section 3 and, finally, a discussion is provided in 
Section 4.  
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2. Material and methods 

2.1. Meteorological data 

2.1.1. Data location 

This work uses wind velocity and wind direction data from four cities in France. These 
cities were chosen to cover most of France to obtain representative results and include 
the cities of Strasbourg (Grand-Est region), Nîmes (Occitanie region), Brest (Bretagne 
region) and Lille (Hauts-de-France region). In particular, the data were obtained from 
the stations named Strasbourg-Entzheim, Nîmes-Courbessac, Brest-Guipavas and Lille-
Lesquin, respectively. The location of these stations and their corresponding regions 
are presented in Fig. 1.  

 

 
Fig. 1. Location of the different meteorological stations used. 

 

2.1.2. Data availability and data range 

The data used in this work were provided by Météo-France, a public institution and 
France’s official meteorology and climatology service. The data are mainly couples of 
wind velocity and wind direction over a twenty-year period from 1999 to 2018, except 
for the Strasbourg-Entzheim station where it is a ten-year period from 1999 to 2008. 
The data were obtained via a personal request addressed to Météo-France and were 
not available on open-access. A summary of the information of the stations is presented 
in Table 1, with the time ranges of the data and the number of data available (the 
coordinates are given in the World Geodetic System 1984).  
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Table 1. Summary of the available data.  

Station Data availability 

Location Latitude Longitude Altitude Time range 
Number of 
valid cases 

Number of 
missing cases 

Brest - Guipavas 48°27’00”N 4°22’59”O 94 m 2009 - 2018 29,171 45 

Lille - Lesquin 50°34’12”N 3°05’51”E 47 m 2009 - 2018 29,185 31 

Nîmes - Courbessac 43°51’24”N 4°24’22”E 59 m 2009 - 2018 29,214 2 

Strasbourg - Entzheim 48°32’58”N 7°38’25”E 150 m 1999 - 2008 29,199 25 

 

All the data were monitored from wind sensors placed 10 meters from the ground and 
the wind frequencies are available for each wind direction with 20° steps for two 
distinct wind discretizations: a “basic” discretization giving wind frequencies for 4 
velocity ranges (from 0 to 1.5 m/s, 1.5 to 3.5 m/s, 3.5 to 8 m/s and more than 8 m/s), 
illustrated in Fig. 2. (A); and a “detailed” discretization giving wind frequencies by 1 m/s 
steps except between 0 and 0.5 m/s, illustrated in Fig. 2. (B). The “basic” discretization 
is a common format mostly found in wind roses (possibly with different velocity 
ranges) while the “detailed” data are less common and more expensive.  

 

 

Fig. 2. Examples of data for Strasbourg and a 200° wind direction with (A) only 4 
ranges of velocities and (B) the detailed data discretized in 18 ranges. 

 

The wind roses for each meteorological station considered in this work and based on 
the “basic” 4-velocity-range discretization described in Fig. 2. (A) are provided in Fig. 3. 
This figure shows how the monitoring locations considered in this study give distinct 
but complementary information, with for example many high velocities at Brest 
compared to Strasbourg and Nîmes, where almost no velocities were monitored over 
8 m/s, and with dominant wind directions at Nîmes and Strasbourg compared to the 
other stations. 
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Fig. 3. Wind roses for each location considered. 

 

2.1.3. Interpolation functions 

A two-parametric continuous probability function, the Weibull distribution, mainly 
used in the wind power industry, can be used to describe wind speed distribution 
(Kumar et al., 2019; Mahmood et al., 2019). The equation of the corresponding 
probability density function is given in (1). 
 

𝑓(𝑣) =
𝑘

𝜆
(

𝑣

𝜆
)

𝑘−1

𝑒−(𝑣/𝜆)𝑘
         (1) 

where 𝑣 is the wind velocity, 𝑘 is the shape parameter and 𝜆 is the scale parameter of 
the distribution, with 𝑘 and 𝜆 being positive. 

For the purpose of this study, an original 5-parametric continuous function was built to 
determine the “detailed” wind discretization based on the “basic” 4-velocity-range wind 
discretization. This function, called Sigmoid function, based on the composition of two 
sigmoid functions, is given in (2). The two functions will be compared in the results 
section. 

𝑓(𝑣) = 𝛼. (−1 +
1

1 + 𝛽1. 𝑒−𝛾1.𝑣
+

1

1 + 𝛽2. 𝑒𝛾2.𝑣
)         (2) 

where 𝛼, 𝛽1, 𝛽2, 𝛾1 and 𝛾2 are positive parameters. 
 
2.2. Numerical model 

Simulations were performed using the unsteady and incompressible solver 
pimpleFoam from OpenFOAM 6.0. A Reynolds-Averaged Navier-Stokes (RANS) 
methodology was used to solve the Navier-Stokes equations with the RNG k-ε 
turbulence model, and the transport of particulate matter was performed using a 
transport equation. This solver was validated previously in Reiminger et al. (2020). 
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The area chosen to illustrate the methodologies discussed in this paper is located in 
Schiltigheim, France (48°36'24", 7°44'00"), a few kilometers north of Strasbourg. This 
area, as well as the only road considered as an emission source in this study (D120, rue 
de la Paix), are illustrated in Fig. 4. (A). PM10 traffic-related emissions were estimated 
at 1.39 mg/s using daily annual mean traffic and were applied along the street 
considering its length in the numerical domain (200 m), its width (9 m) and an emission 
height of 0.5 m to take into account initial dispersion. 

The recommendations given by Franke et al. (2007) were followed. In particular, with 
𝐻 being the highest building height (16 m), the distances between the buildings and the 
lateral boundaries are at least 5𝐻, the distances between the inlet and the buildings as 
well as for the outlet and the buildings are at least 5𝐻 and the domain height is around 
6𝐻. An illustration of the resulting 3D sketch is presented in Fig. 4. (B). A grid sensitivity 
test was performed and showed that hexahedral meshes of 1 m in the study area and 
0.5 m near the building walls are sufficient, leading to a more comparable resolution 
than other CFD studies (Blocken, 2015) and leading to a total number of around 
800,000 cells. The resulting mesh is illustrated in Fig. 5.  

 

 

Fig. 4. Illustration of (A) the area of Strasbourg modeled with the road considered for 
the traffic-related emissions (white dashed lines), and (B) the corresponding area 

built in 3D for the numerical simulations with the emission source (red). 

 

No-slip conditions (U = 0 m/s) were applied to the building walls and ground, and 
symmetry conditions to the lateral and the top boundaries. A freestream condition was 
applied to the outlet boundary, and neutral velocity, turbulent kinetic energy and 
turbulent dissipation profiles suggested by Richards and Norris (2011) were applied to 
the inlet boundary.  

A total of 18 simulations were performed using the same wind velocity (U10 m = 1.5 m/s) 
but with different wind directions from 0° to 340° using a 20° step. Since the 
simulations were performed in neutral conditions and without traffic-induced 
turbulence, the dimensionless concentration 𝐶∗ given in (3) is a function only of the 
wind direction (Schatzmann and Leitl, 2011). In other words, this means that 
considering the previous hypothesis, and for a given emission and building 
configuration (leading to constant 𝐻. 𝐿 𝑞⁄  ratio), only one simulation is needed for each 
wind direction simulated. The pollutant concentrations for a non-simulated wind 
velocity 𝑢 can therefore be computed using (4). 
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𝐶∗ =
𝐶. 𝑈. 𝐻. 𝐿

𝑞
         (3) 

where 𝐶∗ is the dimensionless concentration, 𝐶 is the concentration, 𝑈 the wind 
velocity, 𝐻 the characteristic building height and 𝑞/𝐿 the source strength of emission. 

𝐶𝑢 = 𝑈𝑟𝑒𝑓 .
𝐶𝑟𝑒𝑓

𝑢
    (4) 

where 𝐶𝑢 is the pollutant concentration for the wind velocity 𝑢 not simulated and 𝐶𝑟𝑒𝑓 

the pollutant concentration for the simulated wind velocity 𝑈𝑟𝑒𝑓 .  

 

 
 

Fig. 5. Illustration of the meshes in the computational domain with the emission 
source (red), with 0.5 m meshes near the buildings and 1 m in the study area. 

 

3. Results 

3.1. Wind data interpolation 

 3.1.1. Comparison between the Weibull distribution and the sigmoid function 

The best fitting parameters of the two functions were determined for the whole dataset 
using a non-linear solver and the “basic” 4-velocity-range wind data. The solver was set 
up to solve equation (5) for the four-velocity ranges [0, 1.5[, [1.5, 4.5[, [4.5, 8[ and [8, 
+∞[ for both Weibull and sigmoid functions. This equation reflects that the sum of the 
frequencies between two wind velocities (i.e. the area under the curve) must be equal 
to the frequency given in the “basic” 4-velocity-range wind data. Since the sigmoid 
function has five parameters, a fifth equation to be solved was added only for this 
function and corresponds to (6). With this equation, it is assumed that the wind 
frequency tends toward 0% when the wind speed tends toward 0 m/s, as for the 
Weibull distribution.   

∫ 𝑓(𝑣). 𝑑𝑣 = 
𝑏

𝑎

𝐹𝑉𝑅[𝑎;𝑏[         (5) 

𝑓(0) = 0         (6) 

where 𝑓(𝑣) is the Weibull or the sigmoid function and 𝐹𝑉𝑅[𝑎;𝑏[ is the wind frequency 

given in the 4-velocity-range data for wind velocities ranging from 𝑎 included to 𝑏 
excluded. 
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Fig. 6 (A–D) shows a comparison between the Weibull distribution, the sigmoid 
function and the “detailed” 18-velocity-range data for one wind direction of each 
meteorological station. According to these figures, the two functions generally give the 
same trends, and both appear to give a good estimation of the “detailed” wind data. 
However, depending on the case, the Weibull function can provide improvements in 
comparison to the sigmoid function, as in Fig. 6. (A), or vice versa, the sigmoid function 
can provide improvements in comparison to the Weibull function, as in Fig. 6. (D).  

 

 
 

Fig. 6. (A–D) Weibull distribution and sigmoid function results compared to the 
detailed meteorological wind frequency data for one wind direction at each station 

considered and (E) a notched box plot of the mean error over one wind direction with 
all stations included for both functions. 

 

To better compare the two functions, a notched box plot of the mean error over one 
wind direction is given in Fig. 6. (E). According to this figure, the sigmoid function gives 
generally better results compared to the Weibull distribution, with a lower maximal 
error (30.0% and 33.1% respectively); a lower first quartile (8.1% and 9.5% resp.); a 
lower third quartile (13.8% and 14.5% resp.); a lower mean (11.7% and 13.5% resp.); 
and a lower median (10.6% and 12.4% resp.). The differences are, however, small and 
may not be significant, especially for the median because the notches slightly overlap. 
These differences between the Weibull distribution and the sigmoid function are also 
location dependent, with for example better prediction of the wind distribution in 
Strasbourg using the sigmoid function and an equivalent prediction in Brest. Finally, it 
should be noted that both functions can lead to underestimations of the lower wind 
velocity frequencies, as shown in Fig. 6. (A) and (D).  

According to the previous results, the Weibull distribution and the sigmoid function can 
accurately reproduce the “detailed” wind distribution based on a “basic” 4-velocity-
range discretization with an average error of around 12% over the four stations 
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considered in France. They can nonetheless lead to underestimations of the low wind 
velocity frequencies, for which the highest pollutant concentrations appear.  

 
3.1.2. Optimization of the sigmoid function interpolation for low wind velocities 

The parametrization of the sigmoid function, called standard sigmoid function, was 
modified to improve the estimation of the low wind velocity frequencies in order to 
avoid underestimating pollutant concentrations.  

Based on all the meteorological data considered in this study, it was found that the 
underestimation of low wind velocity frequencies occurs mostly when the frequency of 
the first velocity range is lower than the frequency of the second velocity range. In this 
specific case, the optimized sigmoid function still needs the equation (5) for the four-
velocity ranges given in the “basic” wind data, but equation (6) is replaced by equation 
(7); otherwise, the previous parametrization using equations (5) and (6) is kept. 

𝑓(0) = 𝐹𝑉𝑅[0;𝛼[

𝐹𝑉𝑅[0,𝛼[

𝐹𝑉𝑅[𝛼,𝛽[

         (7) 

where 𝐹𝑉𝑅[0,𝛼[ is the wind frequency for the first range of velocities given in the 4-

velocity-range data and 𝐹𝑉𝑅[𝛼,𝛽[ is the wind frequency for the second range of velocities 

(e.g., in this study 𝛼 = 1.5 and 𝛽 = 4.5). 

The methodology for the optimized sigmoid function is illustrated in Fig. 7. (A–B): when 
the frequency of the first velocity range is higher than the second, as in Fig. 7. (A1), the 
standard parametrization of the sigmoid function can be used because the low wind 
velocity frequencies are estimated accurately, as in Fig. 7. (A2), when the frequency of 
the first velocity range is lower than the second, as in Fig. 7. (B1), the standard 
parametrization leads to underestimations of low wind velocity frequencies and the 
optimized parametrization should be used instead, leading to a better estimation of the 
frequencies, as shown by the blue curve in Fig. 7. (B2) compared to the red curve. 

 
 

Fig. 7. (A–B) Illustration of the optimized sigmoid function methodology and (C) 
comparison with the standard sigmoid function results. 
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The improvements with the optimized sigmoid function compared to the standard 
function was assessed and the results are presented in Fig. 7. (C). For this comparison, 
only the wind directions where the optimized function was applied are considered (49 
wind directions within the 78 previously used) and the errors compared to the 
“detailed” 18-velocity-range data were calculated for the low wind velocity frequencies 
(between 0 and 3.5 m/s). According to this figure, the optimized sigmoid function gives 
improvements over the standard sigmoid function with a lower maximal error (41.0% 
and 44.4% respectively); a lower first quartile (9.2% and 12.9% resp.); a lower third 
quartile (22.4% and 25.5% resp.); a lower mean error (15.2% and 19.4% resp.); and a 
lower median (13.0% and 19.6% resp.). The improvements using the optimized 
function are significative, in particular for the median since the box plot notches do not 
overlap; they are also location dependent. A global improvement of the wind 
distribution prediction ranging between 20% and 45% is observed in Strasbourg, Lille 
and Nîmes while no improvement is observed in Brest.  

According to the previous results, using the optimized sigmoid function can improve 
the reproduction of the “detailed” wind distribution based on a “basic” 4-velocity-range 
compared to the standard sigmoid function, especially for low wind velocities.  

3.2. Mean annual concentration assessment 

3.2.1. Discrete methodology with intermediate velocities 

Initially, mean annual concentrations based on the CFD results can be calculated using 
a discrete methodology. This methodology considers that the mean annual 
concentration at a given location is composed of several small contributions of different 
wind velocities and wind directions. The mean concentration over one wind direction 
can be calculated with equation (8) and the mean annual concentration with equation 
(9). A similar methodology can be found in Solazzo et al. (2011) or in Rivas et al. (2019). 

𝐶𝑑̅ =
∑ 𝐶𝑑,𝑟 . 𝑓𝑑,𝑟

𝑛
𝑟=1

∑ 𝑓𝑑,𝑟
𝑛
𝑟=1

+ 𝐶𝑏𝑔      (8) 

𝐶̅ =
∑ 𝐶𝑑̅. 𝑓𝑑

𝑛
𝑖=1

∑ 𝑓𝑑
𝑛
𝑖=1

      (9) 

where 𝐶𝑑̅ is the mean concentration over one wind direction, 𝐶𝑑,𝑟 is the concentration 

for a given wind direction 𝑑 and a given wind velocity range 𝑟, 𝑓𝑑,𝑟 is the frequency for 

a given wind direction and a given wind velocity range, 𝐶𝑏𝑔 is the background 

concentration, 𝐶̅ is the mean annual concentration and 𝑓𝑑 the total frequency of a given 
wind direction. 

With this methodology, it is necessary to choose a wind velocity in each velocity range 
for which the concentration will be calculated based on the CFD result. A simple choice 
is to consider an intermediate velocity, noted 𝑣𝑖 , corresponding to the average between 
the minimal and the maximal value of the velocity range (e.g., for the velocity range [1.5, 
4.5[, the intermediate value is 3 m/s).  

A comparison of results for this methodology is given in Fig. 8. with distinct cases 
considering (A) the “basic” 4-velocity-range frequencies, (B) the “detailed” 18-velocity-
range frequencies, (C) the frequencies calculated with the sigmoid function, and (D) the 
frequencies calculated with the optimized sigmoid function. No background 
concentration is considered in this study to permit better comparison of the results and 
the CFD results used as inputs for the methodologies were strictly the same.  
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Fig. 8. Mean annual concentrations without background concentration based on (A) 

the “basic” 4-velocity-range monitoring data, (B) the “detailed” 18-velocity-range 
monitoring data, (C) the sigmoid interpolation data and (D) the optimized sigmoid 

interpolation data. 

Initially, it can be seen that using the “basic” 4-velocity-range data leads to an 
underestimation of the concentrations compared to the case using “detailed” 18-
velocity-range data by around 19%. When calculating the “detailed” wind velocity 
distribution based on the “basic” data with the sigmoid function, the difference is 
reduced to 12.9%. Finally, the best results are obtained when using the optimized 
sigmoid function with an underestimation of 3.4%. According to these results, using the 
“basic” 4-velocity-range frequencies can give an estimation of the mean annual 
concentrations but is not sufficient to reach good accuracy compared to the mean 
annual concentration calculated with the “detailed” wind velocity distribution. 
However, using the sigmoid function and especially the optimized variant 
significatively improves the results, leading to almost the same results as those 
obtained with the “detailed” wind velocity distribution. 

3.2.2. Discrete methodology with representative velocities 

The previous methodology used to compute annual concentrations, which was easy to 
set up, nonetheless has certain weaknesses that mostly concern the choice of the wind 
velocity for which the concentrations will be calculated, based on the CFD results. Using 
an intermediate velocity 𝑣𝑖  corresponding to the average between the minimal and the 
maximal value of the velocity range can lead to underestimations of the mean annual 
concentrations. Indeed, in doing so, it is implicitly assumed that the concentration is 
constant with the wind velocity in a given wind velocity range. However, the 
concentration is not constant within a velocity range, especially when this range is 
large. A function describing the evolution of the concentration depending on the wind 
speed is therefore needed. As an example, for neutral atmosphere usually assumed in 
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CFD, the concentration evolves hyperbolically with velocity according to equation (4). 
The representative velocity over one velocity range, considering the hyperbolic 
evolution of the concentration, is given in (11) as a result of (10) and (4). 

1

2
∫ 𝑐(𝑣). 𝑑𝑣

𝑣𝑚𝑎𝑥

𝑣𝑚𝑖𝑛

=  ∫ 𝑐(𝑣). 𝑑𝑣
𝑣𝑟

𝑣𝑚𝑖𝑛

     (10) 

𝑣𝑟 =
√

2

1
𝑣𝑚𝑎𝑥

2 +
1

𝑣𝑚𝑖𝑛
2

     (11) 

where 𝑣𝑚𝑎𝑥  and 𝑣𝑚𝑖𝑛  are respectively the maximal and the minimal velocities of the 
velocity range, 𝑣𝑟  is the representative velocity of the velocity range and 𝑐(𝑣) the 
equation describing the evolution of the concentration as a function of the wind 
velocity, i.e. equation (4). 

The representative velocities 𝑣𝑟  were calculated with equation (11) and compared to 
the intermediate velocities 𝑣𝑖 . It is noteworthy that for a velocity range with a minimal 
velocity of 0 m/s, it is mathematically not possible to compute the representative 
velocity due to the domain definition of the function. A choice is therefore required; for 
the purpose of this study, the same ratio 𝑣𝑟/𝑣𝑖   as for [0.5, 1.5[ was considered. 
According to the results summarized in Table 2. for wind velocities ranging from 0 to 
6.5 m/s, the intermediate velocity can be much higher than the representative velocity 
for low velocities. For example, for wind velocities ranging from 0.5 to 1.5 m/s, the 
intermediate velocity of 1 m/s is almost twice as high as the representative velocity of 
0.67 m/s. For higher velocity ranges, such as [2.5, 3.5[ or more, the differences can be 
neglected. This last statement is true for 1 m/s steps between the minimal and the 
maximal velocities of the velocity range but can become wrong for higher velocity steps.  
 
 
 
Table 2. Comparison between the intermediate velocity 𝑣𝑖  and the representative 
velocity 𝑣𝑟  (*: the representative velocity was calculated considering the same ratio 
𝑣𝑟/𝑣𝑖  as for [0.5, 1.5[ ). 

𝑣𝑚𝑖𝑛 [m/s] 0 0.5 1.5 2.5 3.5 4.5 5.5 

𝑣𝑚𝑎𝑥 
[m/s] 

0.5 1.5 2.5 3.5 4.5 5.5 6.5 

𝑣𝑖  [m/s] 0.25 1.00 2.00 3.00 4.00 5.00 6.00 

𝑣𝑟  [m/s] 0.1675* 0.67 1.82 2.88 3.90 4.92 5.94 

𝑣𝑟/𝑣𝑖  0.67* 0.67 0.91 0.96 0.97 0.98 0.99 

 

Fig. 9. shows a comparison of the mean annual concentrations when using the 
intermediate velocity and when using the representative velocity, based on the 
“detailed” 18-velocity-range wind distribution. According to the results, using the 
intermediate velocity leads to considerable underestimations of the mean annual 
concentrations compared to the use of the representative velocity. The 
underestimation is about 20%. When using the discrete methodology presented in 
Section 3.2.1., it is therefore suggested to use the representative velocity instead of the 
intermediate velocity to better take into account the hyperbolic evolution of the 
pollutant concentrations with the wind velocity to avoid underestimating the 
concentrations.  
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Fig. 9. Comparison of the mean annual concentrations based on the “detailed” 18-
velocity-range wind distribution using (A) the intermediate velocity and (B) the 
representative velocity. 

 

Lastly, it should be noted that the representative velocities given previously were 
calculated with the assumption of equation (4) applied to equation (10). If the function 
describing the evolution of the concentration with the wind speed would change, e.g. 
for other types of numerical models or atmospheric conditions, equation (10) would 
need to be solved again with the new function to have a representative velocity adapted 
to the conditions and the numerical model considered.  

3.2.3. Continuous methodology using the sigmoid function 

For the last approach, mean annual concentrations based on CFD results can be 
calculated using a continuous methodology. This methodology is a combination of 
equation (4), describing the evolution of pollutant concentration with wind velocity, 
and equation (2), describing the evolution of wind velocity frequency with wind 
velocity. The equation to compute the mean annual concentrations continuously is 
given in (12). 

𝐶̅ =
∫ 𝑐(𝑣). 𝑓(𝑣). 𝑑𝑣

+∞

0

∫ 𝑓(𝑣). 𝑑𝑣
+∞

0

+ 𝐶𝑏𝑔     (12) 

where 𝐶̅ is the mean annual concentration, 𝑐(𝑣) is the function describing the evolution 
of the concentration with the wind velocity, 𝑓(𝑣) is the function describing the 
evolution of the wind velocity frequency with the wind velocity, and 𝐶𝑏𝑔 is the 

background concentration.  

Taking equation (4) for 𝑐(𝑣) and equation (2) for 𝑓(𝑣) leads to a mathematical problem. 
Indeed, 𝑐(𝑣) is not defined for 𝑣 = 0 and the limit of 𝑐(𝑣). 𝑓(𝑣) tends toward infinity 
when 𝑣 tends toward 0. To avoid this problem, equation (13) is suggested instead of 
equation (12). With this equation, it is considered that a minimal velocity (𝑣𝑚𝑖𝑛) exists 
for which the pollutant concentration will no longer increase when the wind velocity 
decreases. This hypothesis can be justified by the additional effects, such as traffic-
induced turbulence (Vachon et al., 2002) and atmospheric stability (Qu et al., 2012) that 
may participate in pollutant dispersion for low wind velocities or become 
preponderant. We suggest applying a constant pollutant concentration for wind 
velocities ranging from 0 to 𝑣𝑚𝑖𝑛 and suggest using 𝐶𝑚𝑎𝑥 = 𝑐(𝑣𝑚𝑖𝑛). The choice of 𝑣𝑚𝑖𝑛  
is particularly important when using the optimized sigmoid function.  
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𝐶̅ = 𝐶𝑚𝑎𝑥 .
∫ 𝑓(𝑣). 𝑑𝑣

𝑣𝑚𝑖𝑛

0

∫ 𝑓(𝑣). 𝑑𝑣
+∞

0

 +  
∫ 𝑐(𝑣). 𝑓(𝑣). 𝑑𝑣

+∞

𝑣𝑚𝑖𝑛

∫ 𝑓(𝑣). 𝑑𝑣
+∞

0

+ 𝐶𝑏𝑔   (13) 

where 𝐶̅ is the mean annual concentration, 𝐶𝑚𝑎𝑥  is the maximal concentration accepted 
for the calculation, 𝑣𝑚𝑖𝑛 is the velocity under which 𝑐(𝑣) is considered equal to 𝐶𝑚𝑎𝑥 , 
𝑓(𝑣) is equation (2), 𝑐(𝑣) is equation (4) and 𝐶𝑏𝑔 is the background concentration. 

Fig. 10. shows a comparison between the discrete methodology with the representative 
velocities and the continuous methodology using the optimized sigmoid function. It can 
be seen that the results of the discrete methodology given in Fig. 10. (A) can be reached 
by the continuous methodology. Nonetheless, the difference of 5% reached using 
𝑣𝑚𝑖𝑛 = 0.01 m/s can increase when changing the value of 𝑣𝑚𝑖𝑛: lower values will lead to 
higher concentrations whereas higher values will lead to lower concentrations. The 
value of 𝑣𝑚𝑖𝑛 must therefore be chosen carefully.  

 
Fig. 10. Comparison of the mean annual concentrations (A) based on the “detailed” 18-
velocity-range wind distribution and using the intermediate velocity, and (B) based on 
the optimized sigmoid function and 𝑣𝑚𝑖𝑛  = 0.01 m/s.  

 

4. Discussion 

This study provides tools to assess wind velocity distributions based on “basic” data 
and mean annual air pollutant concentrations based on CFD results. Additional work 
should be done to improve the methodologies and the major issues are discussed 
hereafter.  

The capability of the Weibull and the sigmoid functions to describe wind velocity 
distribution was assessed based on wind data from four meteorological stations in 
France. All of these stations were located in peri-urban environments close to large 
French cities. It is necessary to take into account that the results, and especially the 
interpolation-related errors, might be different for other types of stations such as urban 
and rural stations, and for other countries with different wind characteristics. In 
particular, the optimization suggested for the sigmoid function may not be suitable for 
different countries or type of station. Further works are therefore required in this 
direction. 

The mean annual atmospheric pollutant concentrations can be calculated using a 
discrete methodology as done Solazzo et al. (2011) or Rivas et al. (2019). However, this 
methodology has two major problems. The first concerns the choice of wind velocity 
for which the pollutant concentrations will be calculated: choosing an intermediate 
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velocity is a simple approach which can lead to considerable underestimations of 
pollutant concentrations, and it is better to use a representative velocity instead, as 
suggested in this paper. Using the representative velocity requires, however, making a 
choice for the first velocity range. The second problem concerns the velocity step used 
to build the wind velocity ranges: the result depends on the velocity step used, 
especially for the lower wind velocities for which a decrease in the velocity-step leads 
to higher mean annual concentrations. To avoid these two problems, a continuous 
methodology has been proposed. This methodology does not have an intrinsic 
limitation, but dependent on the function describing the evolution of the concentration 
as a function of wind velocity. If we consider a hyperbolic evolution of the concentration 
with wind velocity, it is necessary to choose a minimal value of velocity for which it is 
considered that lower velocities will not increase the concentrations due to 
compensatory phenomena (traffic-induced turbulence, atmospheric stability, etc.). The 
value of the minimal velocity is open to discussion and assessing this value is outside 
the scope of this paper. Further works are required, for example with infield 
measurement campaigns and comparisons between mean annual concentrations 
monitored and calculated with the continuous methodology. Lastly, two methodologies 
therefore exist, a discrete and a continuous with the discrete one being easier to 
implement in a code. However, we suggest using the continuous methodology if the user 
can describe the evolution of the concentration with the wind speed using a given 
piecewise continuous function. The discrete methodology can also be employed but, 
when an intermediate velocity is used, the user should be aware that the assumption of 
a constant pollutant concentration within velocity the range is made. To avoid this 
assumption, the user could consider a representative velocity instead, with as an 
example a linear evolution of the concentration between the limits of the velocity 
ranges.   

Finally, it should be noted that the methodologies to assess mean annual concentrations 
were addressed using CFD results implying a neutral atmosphere, but can be used for 
any numerical results as long as a function describing the evolution of the concentration 
with the wind velocity is available.  

 

5. Conclusion 

The objectives of this study were to provide methodologies; (1) to assess wind velocity 
distribution based on “basic” data, and (2) to assess mean annual air pollutant 
concentrations based on numerical results. Three approaches for each objective were 
described and compared throughout this paper and the main conclusions are as 
follows: 

(1.a) The Weibull distribution and the sigmoid function can both accurately 
reproduce “detailed” 18-velocity-range wind distribution based on “basic” 4-
velocity-range wind data with an average error of 12%. These functions can 
nonetheless underestimate the frequencies of low velocities. 

(1.b) The optimized sigmoid function improves the wind distribution results over 
the standard sigmoid function, especially for low wind velocities. 

(2.a) Using “basic” 4-velocity-range wind data and the discrete methodology can 
provide an estimation of the mean annual concentrations but is not sufficient 
to achieve high precision, leading to a difference of around 19% compared to 
the use of  “detailed” 18-velocity-range wind data. Using the sigmoid function 
instead, based on the “basic” wind data improves the mean annual 
concentration results with a global error of less than 4%.  

(2.b) When using the discrete methodology to assess mean annual concentrations, 
it is suggested to use a representative velocity of the function describing the 
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evolution of pollutant concentrations with the wind velocities instead of an 
intermediate velocity. The intermediate velocity leads to underestimations of 
mean annual concentrations, especially when using CFD results with a 
neutral case hypothesis where the concentration evolves hyperbolically with 
the wind velocity. 

(2.c) Mean annual concentrations can be assessed using a continuous methodology 
that does not have any of the limitations of discrete methodologies. It is, 
however, limited by the function describing the evolution of the 
concentrations with the wind velocities, which leads to the need to choose a 
minimal velocity when using the sigmoid function.   

Finally, the methodologies presented in this paper can be used for outdoor air quality 
study purposes, which is a relevant starting point for improving both outdoor and 
indoor air quality and, therefore, a key-point to achieve smart sustainable cities. These 
results give insights to researchers and engineers on how to assess wind velocity 
distribution and mean annual concentrations for comparison with annual regulatory 
values given by the EU, the WHO or any other organization, and further works could be 
done to compare the results of the methodologies with monitored data. 
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